Respuesta :

Answer:

[tex]s = 54m +160[/tex]

Step-by-step explanation:

Given: The attachment

Required: Determine the equation

We start by picking any two equivalent points on the table:

[tex](m_1,s_1) = (2,268)[/tex]

[tex](m_2,s_2) = (4,376)[/tex]

Next, we determine the slope, M:

[tex]M = \frac{s_2 - s_1}{m_2 - m_1}[/tex]

[tex]M = \frac{376 - 268}{4-2}[/tex]

[tex]M = \frac{108}{2}[/tex]

[tex]M = 54[/tex]

The equation is then calculated as:

[tex]s - s_1 = M(m - m_1)[/tex]

Where:

[tex]M = 54[/tex]

[tex](m_1,s_1) = (2,268)[/tex]

So, we have:

[tex]s - 268 = 54(m - 2)[/tex]

Open bracket

[tex]s - 268 = 54m - 108[/tex]

Collect like terms

[tex]s = 54m - 108 + 268[/tex]

[tex]s = 54m +160[/tex]

Hence, the equation is: [tex]s = 54m +160[/tex]