Respuesta :

Answer:

[tex]v = \frac{16}{3} \: \: and \: \: u = \frac{20}{3} [/tex]

Step-by-step explanation:

In triangle WYZ ,

[tex] {u}^{2} = {4}^{2} + {v}^{2} = 16 + {v}^{2} [/tex]

In traingle WXZ ,

[tex] {(3 + v)}^{2} = {5}^{2} + {u}^{2} [/tex]

Putting the value of U^2 in above eqn.

[tex] = > {(3 + v)}^{2} = 25 + (16 + {v}^{2} )[/tex]

[tex] = > {v}^{2} + 6v + 9 = 41 + {v}^{2} [/tex]

[tex] = > {v}^{2} - {v}^{2} + 6v = 41 - 9[/tex]

[tex] = > 6v = 32[/tex]

[tex] = > v = \frac{32}{6} = \frac{16}{3} [/tex]

Putting the value of V in eqn. below :-

[tex] {u}^{2} = 16 + { (\frac{16}{3} )}^{2} [/tex]

[tex] = > {u}^{2} = \frac{256}{9} + 16[/tex]

[tex] = > {u}^{2} = \frac{256 + 144}{9} = \frac{400}{9} [/tex]

[tex] = > u = \sqrt{ \frac{400}{9} } = \frac{20}{3} [/tex]

ACCESS MORE