Respuesta :

Answer:

[tex]\displaystyle \sec x=\pm\sqrt{2}[/tex]

Step-by-step explanation:

Trigonometric Equations

We need to recall the identity:

[tex]\sin^2 x+\cos ^2 x=1[/tex]

Solving for the sine:

[tex]\sin^2 x=1-\cos ^2 \qquad\qquad [1][/tex]

We are given the equation:

[tex]\sin x-\cos x=0[/tex]

Or, equivalently:

[tex]\sin x=\cos x[/tex]

Squaring:

[tex]\sin^2 x=\cos^2 x[/tex]

Substituting from [1]

[tex]1-\cos ^2 =\cos^2 x[/tex]

Simplifying:

[tex]2\cos ^2=1[/tex]

Solving:

[tex]\displaystyle \cos^2x=\frac{1}{2}[/tex]

[tex]\displaystyle \cos x=\pm\sqrt{\frac{1}{2}}[/tex]

Since:

[tex]\sec x = \frac{1}{\cos x}:[/tex]

[tex]\mathbf{\displaystyle \sec x=\pm\sqrt{2}}[/tex]

ACCESS MORE