Respuesta :

Answer :

[tex]\pink{\sf Third \: side \: of \: the \: triangle = 45}[/tex]

Solution :

As, the given triangle is a right angled triangle,

Hence, We can use the Pythagoras' Theorem,

[tex]\star\:{\boxed{\sf{\pink {H^{2} = B^{2} + P^{2}}}}}[/tex]

Here,

  • H = Hypotenuse of triangle
  • B = Base of triangle
  • P = Perpendicular of triangle

In given triangle,

  • Base = 24
  • Hypotenuse = 51
  • Perpendicular = ?

Now, by Pythagoras' theorem,

[tex]\star\:{\boxed{\sf{\pink {H^{2} = B^{2} + P^{2}}}}}[/tex]

[tex] \sf : \implies (51)^{2} = (24)^{2} + P^{2}[/tex]

[tex] \sf : \implies 51 \times 51 = 24 \times 24 + P^{2} [/tex]

[tex] \sf : \implies 2601 = 576 + P^{2}[/tex]

[tex] \sf : \implies P^{2} = 2601 - 576[/tex]

[tex] \sf : \implies P^{2} = 2025[/tex]

By squaring both sides :

[tex] \sf \sqrt{P^{2}} = \sqrt{2025}[/tex]

[tex] \sf : \implies P^{2} = \sqrt{2025}[/tex]

[tex] \sf : \implies P^{2} = \sqrt{(45)^{2}}[/tex]

[tex] \sf : \implies P^{2} = 45 [/tex]

[tex]\pink{\sf \therefore \: Third \: side \: of \: the \: triangle \: is \: 45}[/tex]

━━━━━━━━━━━━━━━━━━━━━