Respuesta :

Space

Answer:

[tex]\int {\frac{x^2}{x^2+x+3} } \, dx = - \frac{5\sqrt{11} }{11}arctan(\frac{\sqrt{11}(2x+1) }{11} ) - \frac{1}{2}ln|x^2+x+3| +x + C[/tex]

General Formulas and Concepts:

Pre-Algebra

  • Distributive Property

Algebra I

  • Completing the Square
  • Rearranging Variables

Algebra II

  • Long Division

Calculus

  • U-Substitution
  • [Integration Trick 1] Numerator Split
  • [Integration Trick 2] Completing the Square
  • Integration Rule 1: [tex]\int {cf(x)} \, dx = c\int {f(x)} \, dx[/tex]
  • Integration Rule 2: [tex]\int {f(x)+g(x)} \, dx =\int {f(x)} \, dx + \int {g(x)} \, dx[/tex]
  • Integration 1: [tex]\int {\frac{1}{u} } \, du =ln|u| + C[/tex]
  • Integration 2: [tex]\int {\frac{du}{u^2+a^2} } = \frac{1}{a} arctan(\frac{u}{a} )+C[/tex]
  • Integration 3: [tex]\int {x^n} \, dx = \frac{x^{n+1}}{n+1} +C[/tex]

Step-by-step explanation:

Step 1: Define

[tex]\int {\frac{x^2}{x^2+x+3} } \, dx[/tex]

Step 2: Simplify Function

We do long division to simplify the function inside the function.

See Attachment for Long Division Work.

Once we do long division, our function becomes [tex]1-\frac{x+3}{x^2+x+3}[/tex]

Now we rewrite our Integral: [tex]\int ({1-\frac{x+3}{x^2+x+3} }) \, dx[/tex]

Step 3: Integrate Pt. 1

  1. Distributive Integral [Int Rule 1]:                    [tex]\int {1} \, dx - \int {\frac{x+3}{x^2+x+3} } \, dx[/tex]
  2. Integrate 1st Integral [Int 3]:                          [tex]x - \int {\frac{x+3}{x^2+x+3} } \, dx[/tex]

Step 4: Identify Variables Pt.1

Set variables for u-substitution.

u = x² + x + 3

du = (2x + 1)dx

Step 5: Integrate Pt. 2

  1. Rewrite Integral [Int Rule 1]:                                                                [tex]x - \frac{1}{2} \int {\frac{2(x+3)}{x^2+x+3} } \, dx[/tex]
  2. Distribute 2 [Alg]:                                                                             [tex]x - \frac{1}{2} \int {\frac{2x+6}{x^2+x+3} } \, dx[/tex]
  3. Rewrite Integral [Alg]:                                                                      [tex]x - \frac{1}{2} \int {\frac{2x+1+5}{x^2+x+3} } \, dx[/tex]
  4. Rewrite Integral [Int Trick 1]:                                       [tex]x - \frac{1}{2} [\int {\frac{2x+1}{x^2+x+3} } \, dx + \int {\frac{5}{x^2+x+3} } \, dx ][/tex]
  5. (2nd Int) Complete the Square:                              [tex]x - \frac{1}{2} [\int {\frac{2x+1}{x^2+x+3} } \, dx + \int {\frac{5}{(x+\frac{1}{2})^2 + \frac{11}{4} } } \, dx ][/tex]

Step 6: Identify Variables Pt. 2

Set variables for u-substitution for 2nd integral.

z = x + 1/2

dz = dx

a = √(11/4)

Step 7: Integrate Pt. 3

  1. [Integrate] U-Substitution:                                 [tex]x - \frac{1}{2} [\int {\frac{1}{u} } \, du + \int {\frac{5}{z^2 + (\sqrt{\frac{11}{4}})^2} } \, dz ][/tex]
  2. Rewrite Integral [Int Rule 1]:                                     [tex]x - \frac{1}{2} [\int {\frac{1}{u} } \, du + 5\int {\frac{dz}{z^2 + (\sqrt{\frac{11}{4}})^2} } ][/tex]
  3. Integrate 1st Integral [Int 1]:                                       [tex]x - \frac{1}{2} [ln|u| + 5\int {\frac{dz}{z^2 + (\sqrt{\frac{11}{4}})^2} } ][/tex]
  4. Integrate 2nd Integral [Int 2]:                            [tex]x - \frac{1}{2} [ln|u| + 5(\frac{1}{\sqrt{\frac{11}{4}}}arctan(\frac{z}{\sqrt{\frac{11}{4} } } ) ) ][/tex]
  5. Distribute 5 [Alg]:                                                 [tex]x - \frac{1}{2} [ln|u| + \frac{5}{\sqrt{\frac{11}{4}}}arctan(\frac{z}{\sqrt{\frac{11}{4} } } ) ][/tex]
  6. Distribute -1/2 [Alg]:                                           [tex]x - \frac{1}{2}ln|u| - \frac{5}{2\sqrt{\frac{11}{4}}}arctan(\frac{z}{\sqrt{\frac{11}{4} } } )[/tex]
  7. Rationalize [Alg]:                                                   [tex]x - \frac{1}{2}ln|u| - \frac{5\sqrt{11} }{11}arctan(\frac{z}{\sqrt{\frac{11}{4} } } )[/tex]
  8. Resubstitute variables [Alg]:                              [tex]x - \frac{1}{2}ln|x^2+x+3| - \frac{5\sqrt{11} }{11}arctan(\frac{x+\frac{1}{2} }{\sqrt{\frac{11}{4} } } )[/tex]
  9. Simplify/Rationalize [Alg]:                     [tex]x - \frac{1}{2}ln|x^2+x+3| - \frac{5\sqrt{11} }{11}arctan(\frac{\sqrt{11}(2x+1) }{11} )[/tex]
  10. Rewrite [Alg]:                                [tex]- \frac{5\sqrt{11} }{11}arctan(\frac{\sqrt{11}(2x+1) }{11} ) - \frac{1}{2}ln|x^2+x+3| +x[/tex]
  11. Integration Constant:                            [tex]- \frac{5\sqrt{11} }{11}arctan(\frac{\sqrt{11}(2x+1) }{11} ) - \frac{1}{2}ln|x^2+x+3| +x + C[/tex]

And we have our final answer! Hope this helped you on your Calculus Journey!

Ver imagen Space

hope this will help you........

Ver imagen manissaha129
ACCESS MORE
EDU ACCESS
Universidad de Mexico