Respuesta :
21.4 g Al * (1 mol / 26.98 g ) * (2 mol Fe / 2 mol Al) = 0.793 mol Fe
91.3 g Fe2O3 * (1 mol / 159.69 g) * (2 mol Fe / 1 mol Fe2O3) = 1.14 mol Fe
0.793 mol Fe * (55.85 g / 1 mol) = 44.3 g Fe produced.
91.3 g Fe2O3 * (1 mol / 159.69 g) * (2 mol Fe / 1 mol Fe2O3) = 1.14 mol Fe
0.793 mol Fe * (55.85 g / 1 mol) = 44.3 g Fe produced.
Answer : The percent yield of iron is, 86.5 %
Explanation : Given,
Moles of iron(III)oxide = 0.450 mole
Mass of iron = Actual yield of Fe = 43.6 g
First we have to calculate the moles of iron.
The balanced chemical reaction is,
[tex]2Al+Fe_2O_3\rightarrow 2Fe+Al_2O_3[/tex]
From the balanced reaction we conclude that
As, 1 mole of [tex]Fe_2O_3[/tex] react to give 2 mole of [tex]Fe[/tex]
So, 0.450 mole of [tex]Fe_2O_3[/tex] react to give [tex]\frac{2}{1}\times 0.450=0.9[/tex] moles of [tex]Fe[/tex]
Now we have to calculate the mass of Fe.
[tex]\text{Mass of }Fe=\text{Moles of }Fe\times \text{Molar mass of }Fe[/tex]
[tex]\text{Mass of }Fe=(0.9mole)\times (56g/mole)=50.4g[/tex]
Therefore, the mass iron produces, 50.4 g
Now we have to calculate the percent yield of Fe.
[tex]\%\text{ yield of }Fe=\frac{\text{Actual yield of }Fe}{\text{Theoretical yield of }Fe}\times 100=\frac{43.6g}{50.4g}\times 100=86.5\%[/tex]
Therefore, the percent yield of Fe is, 86.5 %