dimyk
contestada

Which exponential function is represented by the values in the table?


f(x) = 3(2x)

f(x) = 2(2x)

f(x) = 3(3x)

f(x) = 2(3x)

Which exponential function is represented by the values in the table fx 32x fx 22x fx 33x fx 23x class=

Respuesta :

ANSWER

The exponential function is
[tex]f(x) = 3( {2}^{x} )[/tex]

EXPLANATION

Let the exponential function that is represented by the values in the table be of the form,

[tex]f(x) = a( {b}^{x} )[/tex]

The points in the table must satisfy this exponential function.


We substitute the point,

[tex](0,3)[/tex]

to get,


[tex]3 = a( {b}^{0} )[/tex]



This implies that,


[tex]3 = a( 1 )[/tex]


[tex]3 = a[/tex]


Our function now becomes,

[tex]f(x) = 3( {b}^{x} )[/tex]


We gain, plug in another point yo find the value of b too.


Let us substitute
[tex](1,6)[/tex]


This implies that,

[tex]6= 3( {b}^{1} )[/tex]


We divide through by 3 to obtain,

[tex]2 = b[/tex]


Therefore the function is,


[tex]f(x) = 3( {2}^{x} )[/tex]



The correct answer is A.

Answer:

The function [tex]f(x) = 3( {2}^{x} )[/tex].

Step-by-step explanation:

Given : Table for x and f(x).

To find : Which exponential function is represented by the values in the table.

Solution :  Let the exponential function that is represented by the values in the table be of the form,

[tex]f(x) = a( {b}^{x} )[/tex]

On plugging the values from table (0,3)

[tex]3 = a( {b}^{0} )[/tex] we get ,

3 = a.

tex]f(x) = 3( {b}^{x} )[/tex]

To find value of b we substituting other point from table (1,6)

tex]6 = 3( {b}^{1} )[/tex].

2 = b.

Therefore , the function [tex]f(x) = 3( {2}^{x} )[/tex].

ACCESS MORE