Respuesta :
It's asking for a composition function where you insert the function g(x) into f(x).
f(g(x))=10(x+8)+25
f(g(x))=10x+80+25
f(g(x))=10x+105
f(g(x))=10(x+8)+25
f(g(x))=10x+80+25
f(g(x))=10x+105
Answer:
Option C is correct
the function f[g(x)] represents correctly is: [tex]10x+105[/tex]
Step-by-step explanation:
Given the function:
[tex]f(x) = 10x+25[/tex] and [tex]g(x) = x+8[/tex]
then;
[tex]f[g(x)][/tex]
Substitute the function g(x) we have;
⇒[tex]f[x+8][/tex]
Replace x with x+8 in f(x) we have;
⇒[tex]f[x+8] = 10(x+8)+25[/tex]
Using distributive property: [tex]a\cdot (b+c) = a\cdot b+ a\cdot c[/tex]
⇒[tex]f[g(x)] = 10x+80+25 = 10x+105[/tex]
Therefore, the function f[g(x)] represents correctly is: [tex]10x+105[/tex]