Given the functions f(x) = 10x + 25 and g(x) = x + 8, which function represents f[g(x)] correctly?

A.) f[g(x)] = 10x + 33
B.) f[g(x)] = 10x2 + 33
C.) f[g(x)] = 10x + 105
D.) f[g(x)] = 10x2 + 105

Respuesta :

It's asking for a composition function where you insert the function g(x) into f(x).
f(g(x))=10(x+8)+25
f(g(x))=10x+80+25
f(g(x))=10x+105


Answer:

Option C is correct

the function f[g(x)] represents correctly is: [tex]10x+105[/tex]

Step-by-step explanation:

Given the function:

[tex]f(x) = 10x+25[/tex] and [tex]g(x) = x+8[/tex]

then;

[tex]f[g(x)][/tex]

Substitute the function g(x) we have;

⇒[tex]f[x+8][/tex]

Replace x with x+8 in f(x) we have;

⇒[tex]f[x+8] = 10(x+8)+25[/tex]

Using distributive property: [tex]a\cdot (b+c) = a\cdot b+ a\cdot c[/tex]

⇒[tex]f[g(x)] = 10x+80+25 = 10x+105[/tex]

Therefore, the function f[g(x)] represents correctly is: [tex]10x+105[/tex]