Respuesta :
Since: v =sqrt(3)/2 s^2h
6779 liters x 0.0353cu ft/1 liter= 239.299 cu ft
but by proportion s/h = 10/25
s = 10/25 h
and v = sqrt(3)/2 (10/25 h)^2 h
239.299 = 0.139 h^3
h = (239.299/0.139)^(1/3) = 11.985 ft
6779 liters x 0.0353cu ft/1 liter= 239.299 cu ft
but by proportion s/h = 10/25
s = 10/25 h
and v = sqrt(3)/2 (10/25 h)^2 h
239.299 = 0.139 h^3
h = (239.299/0.139)^(1/3) = 11.985 ft
Answer:
[tex]\text{Surface area } = 265.14\ ft^2[/tex]
Step-by-step explanation:
A liquid vessel in the form of an inverted regular hexagonal pyramid.
Altitude of pyramid, h = 25 feet
Base edge of pyramid, a = 10 feet
[tex]\text{Volume of Pyramid}=\dfrac{\sqrt{3}}{2}a^2h[/tex]
A liquid vessel contain maximum volume [tex]=\dfrac{\sqrt{3}}{2}\cdot 10^2\cdot 25=2165\ ft^3[/tex]
Change cubic foot to liter
[tex]1\ ft^3 = 28.32\ liter[/tex]
[tex]2165\ ft^3 = 61307.67\ liters[/tex]
A vessel fill 6,779 liters of water.
6779 lt = 239.398 ft³
Therefore, [tex]239.398=\dfrac{\sqrt{3}}{2}\cdot 10^2h[/tex]
[tex]h=2.764\ ft[/tex]
Surface area rise, a = 10 ft , h = 2.764 ft
[tex]\text{Surface area } = 3a\sqrt{h^2+\dfrac{3a^2}{4}}[/tex]
[tex]\text{Surface area } = 3\cdot 10\sqrt{1.764^2+\dfrac{3\cdot 10^2}{4}}[/tex]
[tex]\text{Surface area } = 265.14\ ft^2[/tex]
Hence, The surface rise when 6,779 liters of water is added to vessel will be 265.14 ft^2