SV is an angle bisector of ∠RST. If m∠RSV = (3x + 9)° and m∠RST = (8x − 26)°, find x.
![SV is an angle bisector of RST If mRSV 3x 9 and mRST 8x 26 find x class=](https://us-static.z-dn.net/files/d0f/a9c079c8f52e2fb2f55543640827e718.png)
Answer:
C) Definition of Angle Bisector, x=22
Step-by-step explanation:
[tex]As\ we\ the\ question\ relates\ only\ about\ SV\ bisecting\ \angle RST,\ We\ may\ use\ the\\[/tex][tex]C)Angle\ Bisector[/tex]
[tex]From\ the\ information\ provided\ we\ know\ that,\\SV\ bisects\ \angle RST\ into\ \angle RSV\ and\ \angle VST.\\Hence,\\\angle RSV\ and\ \angle VST\ are\ equal\ as\ they\ are\ the\ bisected\ angles\ of\ the\ same\ angle.\\Hence,\\\angle RSV\ = \angle VST\\Hence,\\We\ know\ that:\\\angle RSV\ + \angle VST =\angle RST\\Hence,\\\angle RSV\ +\angle RSV\ = \angle RST\\2\angle RSV=\ \angle RST\\[/tex]
[tex]Now\ from\ the\ information\ about\ the\ values\ of\ the\ angles\ provided\ in\ the\ question\ ,\\\angle RSV=(3x+9)\\\angle RST=(8x-26)\\Hence,\\2(3x+9)=(8x-26)\\6x+18=8x-26\\18+26=8x-6x\\2x=44\\x=22[/tex]