Prove that for any natural value of n the value of the expression (n+2)^2-(n-2)^2 is a multiple of 8.
![Prove that for any natural value of n the value of the expression n22n22 is a multiple of 8 class=](https://us-static.z-dn.net/files/db7/638bac36d919376e10163b77801338cf.png)
Answer:
We have the expression:
(n + 2)^2 - (n - 2)^2
Let´s break the parentheses:
(n + 2)^2 = n^2 + 4*n + 4
(n - 2)^2 = n^2 - 4n + 4
Then:
(n + 2)^2 - (n - 2)^2 = (n^2 + 4*n + 4) - (n^2 - 4n + 4) =
= (n^2 - n^2) + (4 - 4) + (4n - (-4n)) = 4n - (-4n) = 8*n
Then for any natural value of n, 8*n will be a multiple of 8.