Answer:
The equation in the slope-intercept form will be:
[tex]y=-\frac{49}{39}x+0[/tex]
Step-by-step explanation:
Given the points
Finding the slope between the points using the formula
[tex]\mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}[/tex]
[tex]\left(x_1,\:y_1\right)=\left(-39,\:49\right),\:\left(x_2,\:y_2\right)=\left(0,\:0\right)[/tex]
[tex]m=\frac{0-49}{0-\left(-39\right)}[/tex]
[tex]m=-\frac{49}{39}[/tex]
We know that the point-slope of the line equation is
[tex]y-y_1=m\left(x-x_1\right)[/tex]
substituting [tex]m=-\frac{49}{39}[/tex] and (-39,49) in the equation
[tex]y-y_1=m\left(x-x_1\right)[/tex]
[tex]y-49=\frac{-49}{39}\left(x-\left(-39\right)\right)[/tex]
Now writing the equation in slope-intercept form
[tex]y=mx+b[/tex]
where m is the slope and b is the y-intercept
[tex]y-49=\frac{-49}{39}\left(x-\left(-39\right)\right)[/tex]
[tex]y-49=\frac{-49}{39}\left(x+39\right)[/tex]
[tex]\mathrm{Apply\:the\:fraction\:rule}:\quad \frac{-a}{b}=-\frac{a}{b}[/tex]
[tex]y-49=-\frac{49}{39}\left(x+39\right)[/tex]
[tex]\mathrm{Add\:}49\mathrm{\:to\:both\:sides}[/tex]
[tex]y-49+49=-\frac{49}{39}\left(x+39\right)+49[/tex]
[tex]y=-\frac{49}{39}x+0[/tex] ∵ [tex]y=mx+b[/tex]
Where
[tex]m=-\frac{49}{39}[/tex] and the y-intercept i.e. [tex]b=0[/tex]
Therefore, the equation in the slope-intercept form will be:
[tex]y=-\frac{49}{39}x+0[/tex]