Respuesta :

Answer:

The equation in the slope-intercept form will be:

[tex]y=-\frac{49}{39}x+0[/tex]

Step-by-step explanation:

Given the points

  • (-39,49)
  • (0,0)

Finding the slope between the points using the formula

[tex]\mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}[/tex]

[tex]\left(x_1,\:y_1\right)=\left(-39,\:49\right),\:\left(x_2,\:y_2\right)=\left(0,\:0\right)[/tex]

[tex]m=\frac{0-49}{0-\left(-39\right)}[/tex]

[tex]m=-\frac{49}{39}[/tex]

We know that the point-slope of the line equation is

[tex]y-y_1=m\left(x-x_1\right)[/tex]

substituting [tex]m=-\frac{49}{39}[/tex] and (-39,49)  in the equation

[tex]y-y_1=m\left(x-x_1\right)[/tex]

[tex]y-49=\frac{-49}{39}\left(x-\left(-39\right)\right)[/tex]

Now writing the equation in slope-intercept form

[tex]y=mx+b[/tex]

where m is the slope and b is the y-intercept

[tex]y-49=\frac{-49}{39}\left(x-\left(-39\right)\right)[/tex]

[tex]y-49=\frac{-49}{39}\left(x+39\right)[/tex]

[tex]\mathrm{Apply\:the\:fraction\:rule}:\quad \frac{-a}{b}=-\frac{a}{b}[/tex]

[tex]y-49=-\frac{49}{39}\left(x+39\right)[/tex]

[tex]\mathrm{Add\:}49\mathrm{\:to\:both\:sides}[/tex]

[tex]y-49+49=-\frac{49}{39}\left(x+39\right)+49[/tex]

[tex]y=-\frac{49}{39}x+0[/tex]              ∵ [tex]y=mx+b[/tex]

Where

[tex]m=-\frac{49}{39}[/tex] and the y-intercept i.e. [tex]b=0[/tex]

Therefore, the equation in the slope-intercept form will be:

[tex]y=-\frac{49}{39}x+0[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico