Answer:
[tex]P(64<x<76)=0.68[/tex]
Step-by-step explanation:
Given that, the mean, [tex]\mu[/tex], and the standard deviation, [tex]\sigma[/tex], of normally distributed exam score are :
[tex]\mu=70[/tex]
[tex]\sigma=6[/tex]
Let [tex]x[/tex] represent the score on a randomly selected exam from this set
The z-score, for the randomly selected exam score x:
For 64<x<76, the range of z-score is
[tex]\frac{64-70}{6}<z<\frac{76-70}{6}= -1<z<1[/tex]
Now, from the z-score table, the value for z=-1 is the probability for x<64.
As the value for z=-1 is 0.15866, so
P(x<64)=0.15866.
Similarly, the value for z=0.67 is 0.84134, so
P(x<76)=0.84134
So, [tex]P(64<x<76)= P(x<76)-P(x<64) \\\\[/tex]
[tex]\Rightarrow P(64<x<76)=0.84134-0.15866=0.68268.[/tex]
Hence, [tex]P(64<x<76)=0.68[/tex]