An object is moving along a straight line, and the uncertainty in its position is 1.90 m.

Required:
Find the minimum uncertainty in the momentum of the object. Find the minimum uncertainty in the object's velocity, assuming that the object is (b) a golf ball (mass=0.045 kg) and (c) an electron.

Respuesta :

Answer:

[tex]2.78\times 10^{-35}\ \text{kg m/s}[/tex]

[tex]6.178\times 10^{-34}\ \text{m/s}[/tex]

[tex]0.31\times 10^{-4}\ \text{m/s}[/tex]

Explanation:

[tex]\Delta x[/tex] = Uncertainty in position = 1.9 m

[tex]\Delta p[/tex] = Uncertainty in momentum

h = Planck's constant = [tex]6.626\times 10^{-34}\ \text{Js}[/tex]

m = Mass of object

From Heisenberg's uncertainty principle we know

[tex]\Delta x\Delta p\geq \dfrac{h}{4\pi}\\\Rightarrow \Delta p\geq \dfrac{h}{4\pi\Delta x}\\\Rightarrow \Delta p\geq \dfrac{6.626\times 10^{-34}}{4\pi\times 1.9}\\\Rightarrow \Delta p\geq 2.78\times 10^{-35}\ \text{kg m/s}[/tex]

The minimum uncertainty in the momentum of the object is [tex]2.78\times 10^{-35}\ \text{kg m/s}[/tex]

Golf ball minimum uncertainty in the momentum of the object

[tex]m=0.045\ \text{kg}[/tex]

Uncertainty in velocity is given by

[tex]\Delta p\geq m\Delta v\geq 2.78\times 10^{-35}\\\Rightarrow \Delta v\geq \dfrac{2.78\times 10^{-35}}{m}\\\Rightarrow \Delta v\geq \dfrac{2.78\times 10^{-35}}{0.045}\\\Rightarrow \Delta v\geq 6.178\times 10^{-34}\ \text{m/s}[/tex]

The minimum uncertainty in the object's velocity is [tex]6.178\times 10^{-34}\ \text{m/s}[/tex]

Electron

[tex]m=9.11\times 10^{-31}\ \text{kg}[/tex]

[tex]\Delta v\geq \dfrac{\Delta p}{m}\\\Rightarrow \Delta v\geq \dfrac{2.78\times 10^{-35}}{9.11\times 10^{-31}}\\\Rightarrow \Delta v\geq 0.31\times 10^{-4}\ \text{m/s}[/tex]

The minimum uncertainty in the object's velocity is [tex]0.31\times 10^{-4}\ \text{m/s}[/tex].

RELAXING NOICE
Relax