Respuesta :
Answer:
pH = 2.059
Explanation:
At the Cathode:
The reduction reaction is:
[tex]2H^+ + 2e^- \to H_2 \ \ \ \mathbf{E^0_{red}= 0.00 \ V}[/tex]
At the anode:
At oxidation reaction is:
[tex]Zn \to Zn^{2+} +2e^- \ \ \ \mathbf{E^0_{ox} = 0.76 \ V}[/tex]
The overall equation for the reaction is:
[tex]\mathbf{Zn + 2H^+ \to Zn^{2+} + H_2}[/tex]
The overall cell potential is:
[tex]\mathbf{E^0_{cell}= E^0_{ox} + E^0_{red}}[/tex]
[tex]\mathbf{E^0_{cell}= 0.76 \ V +0.00 \ V}[/tex]
[tex]\mathbf{E^0_{cell}= 0.76\ V}[/tex]
Using the formula for the Nernst equation:
[tex]E = E^0 - ( \dfrac{0.0591}{n})log (Q)\\[/tex]
where;
E = 0.66
(Zn^2+)=0.22 M
Then
[tex]0.66 =0.76- ( \dfrac{0.0591}{2})log \bigg ( \dfrac{[Zn^{2+} ] PH_2}{[H^+]^2} \bigg )[/tex]
[tex]0.66 =0.76- 0.02955 * log \bigg ( \dfrac{0.22*0.87}{[H^+]^2} \bigg )[/tex]
3.4 = log ( 0.1914) - 2 log [H⁺]
3.4 = -0.7180 - 2 log [H⁺]
3.4 + 0.7180 = - 2 log [H⁺]
4.118 = - 2 log [H⁺]
pH = log [H⁺] = 4.118/2
pH = 2.059
The pH of the solution as described in the question is 2.7.
The equation of the reaction is;
Zn(s) + 2H^+(aq) ----> Zn^2+(aq) + H2(g)
The partial pressure of hydrogen can be converted to molarity using;
P= MRT
M = P/RT
M = 0.87atm/0.082 LatmK-1mol-1 × 298 K = 0.036 mol/L
We have to obtain the reaction quotient
Q = [Zn^2+] [H2]/[H^+]^2
Q = [0.22 ] [0.036]/[H^+]^2
Recall that, from Nernst equation;
E = E° - 0.0592/nlog Q
E° = 0.00V - (-0.76V) = 0.76V
0.660 = 0.76 - 0.0592/2logQ
0.660 - 0.76 = - 0.0592/2logQ
-0.1 = - 0.0592/2logQ
-0.1 × 2/ - 0.0592 = logQ
3.38 = log Q
Q = Antilog (3.38)
Q= 2.39 × 10^3
Now;
2.39 × 10^3 = [0.22 ] [0.036]/[H^+]^2
2.39 × 10^3 = 7.92 × 10^-3/[H^+]^2
[H^+]^2 = 7.92 × 10^-3/2.39 × 10^3
[H^+] = 1.82 × 10^-3
pH = -log[H^+]
pH = -log[ 1.82 × 10^-3]
pH = 2.7
Learn more: https://brainly.com/question/11897796
Otras preguntas
