4. Find the sum of the first eighteen terms of the arithmetic sequence whose nth
term is an = 15 + 8n.
a. 1438
b. 1638
c. 1836
d. 1783​

Respuesta :

Answer:

The sum of first eighteen terms of the arithmetic sequence is [tex]\mathbf{S_{18}=1638}[/tex]

Option B is correct option.

Step-by-step explanation:

We need to find the sum of the first eighteen terms of the arithmetic sequence whose nth  term is an = 15 + 8n

The formula used to calculate sum of arithmetic sequence is: [tex]S_n=\frac{n}{2}(a_1+a_n)[/tex]

Finding a₁ by putting n=1

[tex]a_n=15+8n\\a_{1}=15+8(1)\\a_{1}=15+8\\a_{1}=23[/tex]

We have [tex]a_1=23[/tex]

Finding 18th term n=18

[tex]a_n=15+8n\\a_{18}=15+8(18)\\a_{18}=15+144\\a_{18}=159[/tex]

So, the sum of first eighteen terms of the arithmetic sequence is:

[tex]S_n=\frac{n}{2}(a_1+a_n)\\S_{18}=\frac{n}{2}(a_1+a_{18})\\S_{18}=\frac{18}{2}( 23+159)\\S_{18}=9(182)\\S_{18}=1638[/tex]

So, the sum of first eighteen terms of the arithmetic sequence is [tex]\mathbf{S_{18}=1638}[/tex]

Option B is correct option.

RELAXING NOICE
Relax