Given:
A line passes through the points (6,-7) and (-6,3).
To find:
The equation of line.
Solution:
If a line passes through two points [tex](x_1,y_1)\text{ and }(x_2,y_2)[/tex], then the equation of line is
[tex]y-y_1=\dfrac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex]
The line passes through the points (6,-7) and (-6,3). So, the equation of line is
[tex]y-(-7)=\dfrac{3-(-7)}{-6-6}(x-6)[/tex]
[tex]y+7=\dfrac{3+7}{-12}(x-6)[/tex]
[tex]y+7=\dfrac{10}{-12}(x-6)[/tex]
[tex]y+7=-\dfrac{5}{6}(x-6)[/tex]
Using distributive property, we get
[tex]y+7=-\dfrac{5}{6}(x)-\dfrac{5}{6}(-6)[/tex]
[tex]y+7=-\dfrac{5}{6}x+5[/tex]
Subtract 7 from both sides.
[tex]y=-\dfrac{5}{6}x+5-7[/tex]
[tex]y=-\dfrac{5}{6}x-2[/tex]
Therefore, the equation of line is [tex]y=-\dfrac{5}{6}x-2[/tex].