Answer:
[tex]m = -\frac{2}{3}[/tex]
Step-by-step explanation:
Given
[tex]P_1 = (-1,3)[/tex]
[tex]P_2 = (5,-1)[/tex]
Required
Determine and interpret slope
Slope is calculated using:
[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]
Where
[tex](x_1,y_1) = (-1,3)[/tex]
[tex](x_2,y_2) = (5,-1)[/tex]
[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex] becomes
[tex]m = \frac{-1 - 3}{5 - (-1)}[/tex]
[tex]m = \frac{-1 - 3}{5 +1}[/tex]
[tex]m = \frac{-4}{6}[/tex]
[tex]m = -\frac{2}{3}[/tex]
The above slope is negative and it implies that x increases when y decreases and vice versa.