Respuesta :

Answer:

[tex](4,3)[/tex]

Step-by-step explanation:

Given

[tex]R = (-2,-3)[/tex]

[tex]M = (1,0)[/tex]

Required

Determine the coordinates of S

Midpoint is calculated as:

[tex]M(x,y) = \frac{1}{2}(x_1 +x_2,y_1+y_2)[/tex]

Where:

[tex](x,y) = (1,0)[/tex]

[tex](x_1,y_1) = (-2,-3)[/tex]

Substitute these values in the above formula:

[tex](1,0) = \frac{1}{2}(-2 + x_2,-3+y_2)[/tex]

Multiply through by 2

[tex]2 * (1,0) = 2 * \frac{1}{2}(-2 + x_2,-3+y_2)[/tex]

[tex](2,0) = (-2 + x_2,-3+y_2)[/tex]

By direct comparison:

[tex]2 = -2 + x_2[/tex] and [tex]0 = -3 + y_2[/tex]

Solving for x2

[tex]2 = -2 + x_2[/tex]

[tex]x_2 = 2 + 2[/tex]

[tex]x_2 = 4[/tex]

Solving for y2

[tex]0 = -3 + y_2[/tex]

[tex]y_2 = 0 + 3[/tex]

[tex]y_2 = 3[/tex]

Hence, the coordinates of S is: [tex](4,3)[/tex]

RELAXING NOICE
Relax