Respuesta :

Answer:

The diameter of a circle with the equation is 16.

Step-by-step explanation:

Given the equation

[tex]\left(x\:-\:4\right)^2\:+\:\left(y\:+\:6\right)^2=\:64[/tex]

We know that the circle equation with radius 'r', centered at (a, b)

[tex]\left(x-a\right)^2+\left(y-b\right)^2=r^2[/tex]

[tex]\mathrm{Rewrite}\:\left(x-4\right)^2+\left(y+6\right)^2=64\:\mathrm{in\:the\:form\:of\:the\:standard\:circle\:equation}[/tex]

[tex]\left(x-4\right)^2+\left(y-\left(-6\right)\right)^2=8^2[/tex]

Here,

radius = r = 8

center = (4, -6)

Hence, the radius of the circle is: r = 8

we know that

diameter = 2r

               = 2(8)

               = 16

Therefore, the diameter of a circle with the equation is 16.

Answer:

They are correct. The answer is c. 16

Step-by-step explanation:

ACCESS MORE
EDU ACCESS
Universidad de Mexico