Respuesta :
Answer:
The diameter of a circle with the equation is 16.
Step-by-step explanation:
Given the equation
[tex]\left(x\:-\:4\right)^2\:+\:\left(y\:+\:6\right)^2=\:64[/tex]
We know that the circle equation with radius 'r', centered at (a, b)
[tex]\left(x-a\right)^2+\left(y-b\right)^2=r^2[/tex]
[tex]\mathrm{Rewrite}\:\left(x-4\right)^2+\left(y+6\right)^2=64\:\mathrm{in\:the\:form\:of\:the\:standard\:circle\:equation}[/tex]
[tex]\left(x-4\right)^2+\left(y-\left(-6\right)\right)^2=8^2[/tex]
Here,
radius = r = 8
center = (4, -6)
Hence, the radius of the circle is: r = 8
we know that
diameter = 2r
= 2(8)
= 16
Therefore, the diameter of a circle with the equation is 16.
Answer:
They are correct. The answer is c. 16
Step-by-step explanation: