Answer:
Length = [tex]5\ \text{ft}[/tex]
Breadth = [tex]5\ \text{ft}[/tex]
Step-by-step explanation:
Let [tex]x[/tex] be the length of the garden
and [tex]y[/tex] be the width of the garden
From the details of the cost in the question we get
[tex]20x+2\times (10y)=200\\\Rightarrow 20x+20y=200\\\Rightarrow x+y=\dfrac{200}{20}\\\Rightarrow x+y=10\\\Rightarrow y=10-x[/tex]
Now area of the garden is
[tex]A=xy\\\Rightarrow A=x(10-x)\\\Rightarrow A=10x-x^2[/tex]
Differentiating with respect to x we get
[tex]\dfrac{dA}{dx}=10-2x[/tex]
Equating with 0
[tex]0=10-2x\\\Rightarrow x=\dfrac{-10}{-2}\\\Rightarrow x=5[/tex]
Double derivative of the area is
[tex]\dfrac{d^2A}{dx^2}=-2<0[/tex]
So, area is maximum at [tex]x=5[/tex]
[tex]y=10-x=10-5\\\Rightarrow y=5[/tex]
So, the length and breadth of the rectangle is [tex]5\ \text{ft}[/tex].