Can someone help me with this please

Answer:
y'' = 18x(x³ + 8)⁴(17x³ + 16)
General Formulas and Concepts:
Calculus
Derivative Notation dy/dx
Derivative of a constant is 0.
Basic Power Rule:
Chain Rule: [tex]\frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]
Product Rule: [tex]\frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)[/tex]
Step-by-step explanation:
Step 1: Define
y = (x³ + 8)⁶
Step 2: Find 1st Derivative (dy/dx)
Step 3: Find 2nd Derivative (d²y/dx²)
Answer:
[tex]\frac{d^{2}y}{dx^{2}} = 180x.(x^{3} +8)^{4}[/tex]
Step-by-step explanation:
This question requires use of the chain rule:
[tex]y = (x^{3} + 8)^{6}[/tex]
Let:
[tex]u = x^{3} + 8[/tex]
Then:
[tex]y = u^{6}[/tex]
And:
[tex]\frac{dy}{dx} = \frac{dy}{du}. \frac{du}{dx}\\\\\frac{d^{2}y}{dx^{2} } = \frac{d^{2}y}{du^{2}}. \frac{d^{2}u}{dx^{2}}\\\\\frac{dy}{du} = 6u^{5}\\\\\frac{d^{2}y}{du^{2}} = 30u^{4}\\\\\frac{du}{dx} = 3x^{2}\\\\\frac{d^{2}u}{dx^{2}} = 6x[/tex]
So:
[tex]\frac{dy}{dx} = 6u^{5}.3x^{2}\\\\\frac{dy}{dx} = 18u^{5}x^{2}\\\\[/tex]
And:
[tex]\frac{d^{2}y}{dx^{2}} = 30u^{4}.6x\\\\\frac{d^{2}y}{dx^{2}} = 180u^{4}x[/tex]
Finally, substitute u for its equivalent expression in x:
[tex]\frac{d^{2}y}{dx^{2}} = 180x.(x^{3} +8)^{4}[/tex]