Answer:
The minimum sample required = 1296.65
Step-by-step explanation:
Given that:
Variance [tex]\sigma^2 = 2.89[/tex]
Standard deviation [tex]\sigma = \sqrt{2.89}[/tex]
Standard deviation [tex]\sigma = 1.7[/tex]
Margin of error = 0.11
Confidence Interval = 98%
Level of significance = 1 - 0.98 = 0.02
The critical value = [tex]Z _{\alpha//2} = Z_{0.02/2} = Z_{0.01}[/tex]
= 2.33
Thus, the minimum sample size is given by the formula:
[tex]n = \bigg ( \dfrac{Z_{\alpha/2} \times \sigma }{E} \bigg)^2[/tex]
[tex]n = \bigg (\dfrac{2.33 \times 1.7 }{0.11} \bigg)^2[/tex]
n = 1296.65