Respuesta :
Solution :
a). There are total 5 executives. Therefore the possible sample size of 2 is
[tex]$^nC_r=\frac{n!}{r!(n-r)!}$[/tex]
[tex]$^5C_2=\frac{5!}{2!(5-2)!}$[/tex]
[tex]$=\frac{5!}{2! \ 3!}$[/tex]
= 10
So, there are 10 possible ways for selection of sample size of 2.
b).
Sample Samples of service length Sample mean
Snow, Tolson 20, 22 (20+22)/2 = 21
Snow, Kraft 20, 26 23
Snow, Irwin 20, 24 22
Snow, Jones 20, 28 24
Tolson, Kraft 22, 26 24
Tolson, Irwin 22, 24 23
Tolson, Jones 22, 28 25
Kraft, Irwin 26, 24 25
Kraft, Jones 26, 28 27
Irwin,Jones 24, 28 26
c). The mean and the standard deviation of the means of the sampling distribution is given by :
[tex]$\bar{X}= \sum_{i-1}^{10}\frac{\bar{x}_i}{n}$[/tex]
[tex]$=\frac{21+23+22+24+24+23+25+25+27+26}{10}$[/tex]
[tex]$=\frac{240}{10} $[/tex]
= 24
The variance of the sample means :
[tex]$S^2=\frac{1}{n}\sum_{i-1}^{10}\left(\bar x_i - \bar X \right)^2$[/tex]
[tex]$=\frac{1}{10}\sum_{i-1}^{10}\left(\bar x_i - 24 \right)^2$[/tex]
[tex]$=\frac{1}{10}\times(30)$[/tex]
= 3
Therefore the standard deviation of the sample means is
[tex]$S=\sqrt{variance}$[/tex]
[tex]$=\sqrt3$[/tex]
= 1.732
d). The population means is given by:
[tex]$\mu =\frac{20+22+26+24+28}{5}$[/tex]
[tex]$=\frac{120}{5}$[/tex]
= 24
Therefore, we can say that the mean of the sample means is a point estimate of the population mean.
