Answer:
0.7 m/[tex]s^{2}[/tex]
Explanation:
From Newton's law of universal gravitation,
F = [tex]\frac{GMm}{r^{2} }[/tex]
and from Newton's second law of motion,
F = mg
So that;
mg = [tex]\frac{GMm}{r^{2} }[/tex]
⇒ g = [tex]\frac{GM}{r^{2} }[/tex]
For the first planet,
7 = [tex]\frac{GM}{R^{2} }[/tex]
⇒ G = [tex]\frac{7R^{2} }{M}[/tex] .............. 1
For the second planet,
g = [tex]\frac{0.4GM}{(2R)^{2} }[/tex]
= [tex]\frac{0.4GM}{4R^{2} }[/tex]
⇒ G = [tex]\frac{4gR^{2} }{0.4M}[/tex] ............. 2
Equating 1 and 2, we have;
[tex]\frac{7R^{2} }{M}[/tex] = [tex]\frac{4gR^{2} }{0.4M}[/tex]
g = [tex]\frac{7R^{2} *0.4M}{4R^{2}M }[/tex]
= [tex]\frac{7*0.4}{4}[/tex]
= [tex]\frac{2.8}{4}[/tex]
g = 0.7
Therefore, the acceleration due to gravity on the new planet is 0.7 m/[tex]s^{2}[/tex].