On a surface of a planet of radius R and mass M the acceleration due to gravity is 7m/s?. Consider another planet of radius 2R and mass 0.4M. What would the acceleration due to gravity be on this new planet? Show your calculations.

Respuesta :

Answer:

0.7 m/[tex]s^{2}[/tex]

Explanation:

From Newton's law of universal gravitation,

F = [tex]\frac{GMm}{r^{2} }[/tex]

and from Newton's second law of motion,

F = mg

So that;

mg = [tex]\frac{GMm}{r^{2} }[/tex]

⇒ g = [tex]\frac{GM}{r^{2} }[/tex]

For the first planet,

7 = [tex]\frac{GM}{R^{2} }[/tex]

⇒ G = [tex]\frac{7R^{2} }{M}[/tex] .............. 1

For the second planet,

g = [tex]\frac{0.4GM}{(2R)^{2} }[/tex]

   = [tex]\frac{0.4GM}{4R^{2} }[/tex]

⇒ G = [tex]\frac{4gR^{2} }{0.4M}[/tex] ............. 2

Equating 1 and 2, we have;

[tex]\frac{7R^{2} }{M}[/tex] = [tex]\frac{4gR^{2} }{0.4M}[/tex]

g = [tex]\frac{7R^{2} *0.4M}{4R^{2}M }[/tex]

  = [tex]\frac{7*0.4}{4}[/tex]

  = [tex]\frac{2.8}{4}[/tex]

g = 0.7

Therefore, the acceleration due to gravity on the new planet is 0.7 m/[tex]s^{2}[/tex].

RELAXING NOICE
Relax