Respuesta :
Here, the direction angle is 107.1° and the magnitude is 14.2. Therefore, option D is the correct answer.
Given that, |u| = 10 at an angle of 45° and |v| = 13 at an angle of 150°.
We need to find magnitude and direction angle of w.
We have, w = u + v, θ=45° and ϕ=150°.
[tex]u_{x}[/tex]=|u|cosθ=10cos45°=7.071
[tex]u_{y}[/tex]=|u|sinϕ=[tex]u_{y}[/tex]=|10sin45°=7.071
[tex]v_{x}[/tex]=|v|cosθ=13cos150°=-11.25833
[tex]v_{y}[/tex]=|v|sinϕ=[tex]v_{y}[/tex]=13sin150°=6.5
Using this information, we get
[tex]R_{x} =u_{x} +v_{x}[/tex]=7.071-11.25833=-4.18733
[tex]R_{y} =u_{y} +v_{y}[/tex]=7.071+6.5=13.571
Direction angle=[tex]tan^{-1}[/tex](Ry/Rx)
Direction angle=[tex]tan^{-1}[/tex](13.571/-4.18733)
=-72.8239 or 107.1476≈107.1
Now, [tex]|w|=\sqrt{(|u|cos \theta +|v|cos \phi )^{2}+(|u|sin \theta +|v|sin \phi )^{2}}[/tex]
=[tex]|w|=\sqrt{(10cos45\textdegree +13cos150\textdegree )^{2}+(10sin 45\textdegree+13sin150\textdegree)^{2}}=14.2026[/tex]
Here, the direction angle is 107.1° and the magnitude is 14.2. Therefore, option D is the correct answer.
To learn more about the magnitude and direction angle visit:
https://brainly.com/question/12977024.
#SPJ2