Given:
The vertices of ΔWXY are W(-10, 4), X(-3, -1), and Y(-5, 11).
To find:
Which type of triangle is ΔWXY by its sides.
Solution:
Distance formula:
[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Using distance formula, we get
[tex]WX=\sqrt{(-3-(-10))^2+(-1-4)^2}[/tex]
[tex]WX=\sqrt{(-3+10)^2+(-5)^2}[/tex]
[tex]WX=\sqrt{(7)^2+(-5)^2}[/tex]
[tex]WX=\sqrt49+25}[/tex]
[tex]WX=\sqrt{74}[/tex]
Similarly,
[tex]XY=\sqrt{\left(-5-\left(-3\right)\right)^2+\left(11-\left(-1\right)\right)^2}=2\sqrt{37}[/tex]
[tex]WY=\sqrt{\left(-5-\left(-10\right)\right)^2+\left(11-4\right)^2}=\sqrt{74}[/tex]
Now,
[tex]WX=WY[/tex]
So, triangle is an isosceles triangles.
and,
[tex]WX^2+WY^2=(\sqrt{74})^2+(\sqrt{74})^2[/tex]
[tex]WX^2+WY^2=74+74[/tex]
[tex]WX^2+WY^2=148[/tex]
[tex]WX^2+WY^2=(2\sqrt{37})^2[/tex]
[tex]WX^2+WY^2=WY^2[/tex]
So, triangle is right angled triangle.
Therefore, the ΔWXY is an isosceles right angle triangle.