Respuesta :
Solution :
The moment of inertia for a circular disc about its centre is given by
[tex]$I=\frac{mr^2}{2}$[/tex]
Given , radius of CD, [tex]$r=\frac{d}{2}$[/tex]
[tex]$r=\frac{1.5 \times 10^{-2}}{2}$[/tex]
[tex]$=7.5 \times 10^{-2} \ m$[/tex]
A).
The moment of inertia of CD about its centre is
[tex]$I_{centre}=\frac{mr^2}{2}$[/tex]
[tex]$=\frac{25 \times 10^{-3}\times (7.5 \times 10^{-2})^2}{2}$[/tex]
[tex]$= 7\times 10^{-5} \ kg \ m^2$[/tex]
B).
The moment of inertia about parallel axis of CD with respect to its central axis is given by the parallel axis theorem,
[tex]$I_{p}=I_c + md^2$[/tex]
where, d is the distance between the parallel axis and central axis
Therefore, moment of inertia of CD about its edge is
[tex]$I_p=I_c +md^2$[/tex]
[tex]$=\frac{mr^2}{2}+mr^2$[/tex]
[tex]$=\frac{3}{2}mr^2$[/tex]
[tex]$=\frac{3(25 \times 10^{-3})\times (7.5 \times 10^{-2})^2}{2}$[/tex]
[tex]$=2.1 \times 10^{-4} \ kg \ m^2$[/tex]
(a) The CD's moment of inertia for rotation about a perpendicular axis through its center is [tex]7.031 \times 10^{-5} \ kgm^2[/tex]
(b) The CD's moment of inertia for rotation about a perpendicular axis through the edge of the disk is [tex]2.11 \times 10^{-4} \ kgm^2[/tex]
The given parameters;
- diameter of the CD, d = 15 cm
- radius of the CD, r = 7.5 cm
- mass of the CD, m = 25 g = 0.025 kg
(A) The CD's moment of inertia for rotation about a perpendicular axis through its center is calculated as follows;
[tex]I_c = \frac{1}{2} mr^2\\\\I_c = \frac{1}{2} \times 0.025 \times (0.075)^2\\\\I_c = 7.03 1 \times 10^{-5} \ kgm^2[/tex]
(B) The CD's moment of inertia for rotation about a perpendicular axis through the edge of the disk is calculated as;
[tex]I_p = I_c + mr^2\\\\I_p = (7.031 \times 10^{-5}) \ + \ 0.025 \times (0.075)^2\\\\I_p = 2.11 \times 10^{-4} \ kgm^2[/tex]
Learn more here:https://brainly.com/question/19091222
Otras preguntas
