An electron (restricted to one dimension) is trapped between two rigid walls 1.40 nm apart. The electron's energy is approximately 19 eV. (a) What is the quantum number n for the energy state that the electron occupies? (b) Based on the quantum number you found in part (a), calculate a more precise value for the electron's energy in eV), expressed to at least three significant figures. (Use any physical constants or unit conversions to at least four significant figures in your calculations.) _________ eV

Respuesta :

Answer:

a)    n = 9.9       b)      E₁₀ = 19.25 eV

Explanation:

Solving the Scrodinger equation for the electronegative box we get

         Eₙ = (h² / 8m L²2) n²

where l is the distance L = 1.40 nm = 1.40 10⁻⁹ m and n the quantum number

 In this case En = 19 eV let us reduce to the SI system

          En = 19 eV (1.6 10⁻¹⁹ J / 1 eV) = 30.4 10⁻¹⁹ J

          n = √ (In 8 m L² / h²)

let's calculate

          n = √ (8  9.1 10⁻³¹ (1.4 10⁻⁹)²  30.4 10⁻¹⁹ / (6.63 10⁻³⁴)²

          n = √ (98)            n = 9.9

since n must be an integer, we approximate them to 10

b) We substitute for the calculation of energy

        In = (h² / 8mL2² n²

        In = (6.63 10⁻³⁴) 2 / (8 9.1 10⁻³¹  (1.4 10⁻⁹)² 10²

        E₁₀ = 3.08 10⁻¹⁸ J

we reduce eV

      E₁₀ = 3.08 10⁻¹⁸ j (1ev / 1.6 10⁻¹⁹J)

      E₁₀ = 1.925 101 eV

      E₁₀ = 19.25 eV

the result with significant figures is

        E₁₀ = 19.25 eV

RELAXING NOICE
Relax