Respuesta :
Answer:
0.8958
Step-by-step explanation:
Given that:
The mean [tex]\mu[/tex] = 4959
The standard deviation [tex]\sigma[/tex] = 448
The sample size n = 43
[tex]\mu_{\overline x} = \mu = 4959[/tex]
[tex]\sigma __{\overline x}} = \dfrac{\sigma}{\sqrt{n}}= \dfrac{448}{\sqrt{43}}[/tex]
By applying the central limit theorem;
[tex]\overline X \sim N \bigg( \mu_{\overline x} = 4959 , \sigma_{\overline x} = \dfrac{448}{\sqrt{43}}\bigg )[/tex]
The purpose of this question is to calculate the probability that the mean of a sample of 43 cars would differ from the population mean by less than111 miles.
This implies that;
[tex]P( |\mu-\overline x| <111) = p( 4959-111 < \overline X < 4959 +111)[/tex]
[tex]= P( 4848 < \overline X < 5070)[/tex]
[tex]= P \bigg ( \dfrac{ \overline x - \mu_x }{ \dfrac{\sigma}{\sqrt{n}}} < Z < \dfrac{ \overline x - \mu_x }{ \dfrac{\sigma}{\sqrt{n}}} \bigg )[/tex]
[tex]= P \bigg ( \dfrac{4848 -4959 }{ \dfrac{448}{\sqrt{43}}} < Z < \dfrac{5070 -4959 }{ \dfrac{448}{\sqrt{43}}} \bigg )[/tex]
[tex]= P \bigg ( \dfrac{-111 }{ 68.319} < Z < \dfrac{111 }{68.319} \bigg )[/tex]
[tex]= P ( -1.6247< Z < 1.6247 )[/tex]
= P ( Z < 1.627 ) - P(Z < -1.627)
From the standard normal tables
= 0.94791 -0.05208
= 0.89583
≅ 0.8958 to four decimal places.