Which function is the inverse of f(x)=-x³-9?

Answer:
Inverse of f(x)=-x^3-9 is [tex]f^{-1}(x)=\sqrt[3]{-x-9}[/tex]
Option B is correct option.
Step-by-step explanation:
We need to find inverse of [tex]f(x)=-x^3-9[/tex]
For finding the inverse replace f(x) with y
[tex]y=-x^3-9[/tex]
Now, solve for x
Adding 9 on both sides
[tex]y+9=-x^3-9+9\\y+9=-x^3[/tex]
Multiply both sides by -1
[tex]-(y+9)=x^3\\x^3=-y-9[/tex]
Taking cube root on both sides:
[tex]x^3=-y-9\\\sqrt[3]{x^3} =\sqrt[3]{-y-9} \\x=\sqrt[3]{-y-9}[/tex]
Now replace x with f^{-1}(x) and y with x
[tex]f^{-1}(x)=\sqrt[3]{-x-9}[/tex]
So, inverse of f(x)=-x^3-9 is [tex]f^{-1}(x)=\sqrt[3]{-x-9}[/tex]
Option B is correct option.