Answer:
7.5 m
Explanation:
k = Spring constant = 180 N/m
x = Displacement of spring = 14 cm
m = Mass of projectile = 0.024 kg
a = g = Acceleration due to gravity = [tex]9.81\ \text{m/s}^2[/tex]
s = Displacement of projectile
v = Final velocity = 0
u = Initial velocity
The potential energy of the spring will be equal to the kinetic energy of the object
[tex]\dfrac{1}{2}kx^2=\dfrac{1}{2}mu^2\\\Rightarrow u=\sqrt{\dfrac{kx^2}{m}}\\\Rightarrow u=\sqrt{\dfrac{180\times 0.14^2}{0.024}}\\\Rightarrow u=12.12\ \text{m/s}[/tex]
[tex]v^2-u^2=2as\\\Rightarrow s=\dfrac{v^2-u^2}{2a}\\\Rightarrow s=\dfrac{0-12.12^2}{2\times -9.81}\\\Rightarrow s=7.5\ \text{m}[/tex]
The maximum height reached above the initial position is 7.5 m