Given:
[tex]\dfrac{dr}{dt}=1.4\text{ in/s}[/tex]
[tex]\dfrac{dh}{dt}=-2.1\text{ in/s}[/tex]
To find:
The rate of change in volume at [tex]r=120\text{ in. and }175\text{ in.}[/tex]
Solution:
We know that, volume of a cone is
[tex]V=\dfrac{1}{3}\pi r^2h[/tex]
Differentiate with respect to t.
[tex]\dfrac{dV}{dt}=\dfrac{1}{3}\pi\times \left[(r^2\dfrac{dh}{dt}) + h(2r\dfrac{dr}{dt})\right][/tex]
Substitute the given values.
[tex]\dfrac{dV}{dt}=\dfrac{1}{3}\times \dfrac{22}{7}\times \left[(120)^2(-2.1) +175(2)(120)(1.4)\right][/tex]
[tex]\dfrac{dV}{dt}=\dfrac{22}{21}\times \left[-30240+58800\right][/tex]
[tex]\dfrac{dV}{dt}=\dfrac{22}{21}\times 28560[/tex]
[tex]\dfrac{dV}{dt}=29920[/tex]
Therefore, the volume of decreased by 29920 cubic inches per second.