Respuesta :

Answer:

The linear function is:

[tex]f(x) = -\frac{1}{3}x-\frac{23}{3}\\[/tex]

Step-by-step explanation:

Given

f(-1)=8 and f(5)=6

We can extract two pairs of input-output from the values given

From f(-1)=8,

(x1,y1) = (-1,8)

and

From f(5)=6

(x2,y2) = (5,6)

The linear function is given by:

[tex]y = mx+b[/tex]

Here m is the slope which is calculated by the formula

[tex]m =\frac{y_2-y_1}{x_2-x_1}[/tex]

Putting values

[tex]m = \frac{6-8}{5+1}\\m = \frac{-2}{6}\\m = -\frac{1}{3}[/tex]

Putting in the equation

[tex]y = -\frac{1}{3}x+b[/tex]

Putting the pair of input-output equation (5,6)

[tex]6 = -\frac{1}{3}(5) +b\\6 = -\frac{5}{3}+b\\b = 6+\frac{5}{3}\\b = \frac{18+5}{3}\\b = \frac{23}{3}[/tex]

Putting the value of b

[tex]y = -\frac{1}{3}x-\frac{23}{3}\\f(x) = -\frac{1}{3}x-\frac{23}{3}\\[/tex]

Hence,

The linear function is:

[tex]f(x) = -\frac{1}{3}x-\frac{23}{3}\\[/tex]

ACCESS MORE