PROBLEM SOLVING Find the value of k so that the graph of the equation has the given y-intercept.
y = -1/3x + 5/6k; b = - 10

K=?

Respuesta :

Answer:

2k⋅(3k−7)⋅(k+4)

Step-by-step explanation:

STEP

1

:

Equation at the end of step 1

 ((6 • (k3)) +  (2•5k2)) -  56k

STEP

2

:

Equation at the end of step

2

:

 ((2•3k3) +  (2•5k2)) -  56k

STEP

3

:

STEP

4

:

Pulling out like terms

4.1     Pull out like factors :

  6k3 + 10k2 - 56k  =   2k • (3k2 + 5k - 28)

Trying to factor by splitting the middle term

4.2     Factoring  3k2 + 5k - 28

The first term is,  3k2  its coefficient is  3 .

The middle term is,  +5k  its coefficient is  5 .

The last term, "the constant", is  -28

Step-1 : Multiply the coefficient of the first term by the constant   3 • -28 = -84

Step-2 : Find two factors of  -84  whose sum equals the coefficient of the middle term, which is   5 .

     -84    +    1    =    -83

     -42    +    2    =    -40

     -28    +    3    =    -25

     -21    +    4    =    -17

     -14    +    6    =    -8

     -12    +    7    =    -5

     -7    +    12    =    5    That's it

Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -7  and  12

                    3k2 - 7k + 12k - 28

Step-4 : Add up the first 2 terms, pulling out like factors :

                   k • (3k-7)

             Add up the last 2 terms, pulling out common factors :

                   4 • (3k-7)

Step-5 : Add up the four terms of step 4 :

                   (k+4)  •  (3k-7)

            Which is the desired factorization

Final result :

 2k • (3k - 7) • (k + 4)

ACCESS MORE