Respuesta :
Missing Part of the question:
a) Assume you wish to determine the maximum and minimum temperatures you would experience. the domain to study for the function H(x) would be?
b)The is one critical number for the function on the domain in part a and it is?
c) The maximum temperature you would experience is ?
d) The minimum temperature you would experience is ?
Answer:
a. Domain : [tex]4 \leq x \leq 41[/tex]
b. Critical point: [tex]x = 12.33[/tex]
c. The maximum is 115.09
d. The minimum is 100.62
Step-by-step explanation:
Given
[tex]H(x) = 100 + \frac{60}{x^2} + \frac{240}{(45 - x)^2}[/tex]
Solving (a): The domain of H(x)
From the question, we understand that the distance between the two stores is 45ft
Let the first stove be at point A (0 ft) and
the second stove be at point B (45ft)
Since you move back and forth within 4ft from either stoves, then
Your maximum distance at A is (0 + 4) ft = 4ft
Your minimum distance at B is (45 - 4) ft = 41ft
Hence, the domain is: [tex]4 \leq x \leq 41[/tex]
Solving (b): Critical Value
First, we have to differentiate H(x) w.r.t x
[tex]H(x) = 100 + \frac{60}{x^2} + \frac{240}{(45 - x)^2}[/tex]
Differentiate
[tex]H'(x) = 0 -\frac{120}{x^3} + \frac{480}{(45- x)^3}[/tex]
[tex]H'(x) = -\frac{120}{x^3} + \frac{480}{(45- x)^3}[/tex]
Equate H'(x) to 0
[tex]0 = -\frac{120}{x^3} + \frac{480}{(45- x)^3}[/tex]
Rewrite as:
[tex]\frac{120}{x^3} = \frac{480}{(45- x)^3}[/tex]
Cross Multiply
[tex]480 * x^3 = 120 * (45 -x)^3[/tex]
[tex]480 * x^3 = 120 * (45 -x)*(45 -x) * (45 -x)[/tex]
[tex]480 * x^3 = 120 * (2025 -90x +x^2) * (45 -x)[/tex]
[tex]480 * x^3 = 120 * (91125 -4050x +45x^2 -2025x - 90x^2 - x^3)[/tex]
[tex]480 * x^3 = 120 * (91125 -4050x -2025x+45x^2 - 90x^2 - x^3)[/tex]
[tex]480 * x^3 = 120 * (91125 -6075x-45x^2 - x^3)[/tex]
Divide both sides by 120
[tex]4x^3 =91125 -6075x-45x^2 - x^3[/tex]
[tex]4x^3 +x^3-91125 +6075x+45x^2= 0[/tex]
[tex]5x^3-91125 +6075x+45x^2= 0[/tex]
[tex]5x^3+45x^2 +6075x-91125= 0[/tex]
Divide through by 5
[tex]x^3+9x^2 +1215x-18225= 0[/tex]
Solving for x, we have that
[tex]x\approx \:12.33067[/tex]
[tex]x = 12.33[/tex]
Hence, the critical point is 12.33
Solving (x): Maximum temperature
Here, we simply substitute the endpoints of the domain in [tex]H(x) = 100 + \frac{60}{x^2} + \frac{240}{(45 - x)^2}[/tex]
Let x = 4
[tex]H(4) = 100 + \frac{60}{4^2} + \frac{240}{(45 - 4)^2}[/tex]
[tex]H(4) = 100 + \frac{60}{16} + \frac{240}{(41)^2}[/tex]
[tex]H(4) = 100 + \frac{60}{16} + \frac{240}{1681}[/tex]
[tex]H(4) = 100 + 3.75+ 0.14277215942[/tex]
[tex]H(4) = 103.892772159[/tex]
[tex]H(4) = 103.89[/tex] --- approximated
Let x = 41
[tex]H(41) = 100 + \frac{60}{41^2} + \frac{240}{(45 - 41)^2}[/tex]
[tex]H(41) = 100 + \frac{60}{41^2} + \frac{240}{4^2}[/tex]
[tex]H(41) = 100 + \frac{60}{1681} + \frac{240}{16}[/tex]
[tex]H(41) = 100 + 0.03569303985 + 15[/tex]
[tex]H(41) = 115.03569304[/tex]
[tex]H(41) = 115.04[/tex] ---- approximated
Compare both values: The maximum is 115.09
Solving (d): The minimum temperature
In (b), we have that:
[tex]x = 12.33[/tex] --- critical point
The minimum occurs at this point
Substitute 12.33 for x in [tex]H(x) = 100 + \frac{60}{x^2} + \frac{240}{(45 - x)^2}[/tex]
[tex]H(12.33) = 100 + \frac{60}{12.33^2} + \frac{240}{(45 - 12.33)^2}[/tex]
[tex]H(12.33) = 100 + \frac{60}{12.33^2} + \frac{240}{32.67^2}[/tex]
[tex]H(12.33) = 100 + \frac{60}{152.0289} + \frac{240}{1067.3289}[/tex]
[tex]H(12.33) = 100 + 0.39466180443 + 0.22486039682[/tex]
[tex]H(12.33) = 100.619522201[/tex]
[tex]H(12.33) = 100.62[/tex] --- approximated
Hence, the minimum is 100.62