Answer:
[tex] TV = 34 [/tex]
Step-by-step explanation:
WX = 23 – 2x,
TV = 64 – 10x,
First, create an equation you will use to find the value of x.
Thus:
[tex] WX = \frac{1}{2}(TV) [/tex] (midsegment theorem of a ∆)
[tex] 23 - 2x = \frac{1}{2}(64 - 10x) [/tex] (substitution)
[tex] 23 - 2x = \frac{1}{2}(64 - 10x) [/tex]
Multiply both sides by 2
[tex] (23 - 2x)*2 = \frac{1}{2}(64 - 10x)*2 [/tex]
[tex] 46 - 4x = 64 - 10x [/tex]
Collect like terms
[tex] 46 - 64= 4x - 10x [/tex]
[tex] -18= -6x [/tex]
Divide both sides by -6
[tex] 3 = x [/tex]
[tex] x = 3 [/tex]
Find TV:
[tex] TV = 64 - 10x [/tex]
Plug in the value of x
[tex] TV = 64 - 10(3) = 64 - 30 [/tex]
[tex] TV = 34 [/tex]