Given:
The expression is
[tex]\tan (\cos ^{-1}(-\dfrac{1}{2}))[/tex]
To find:
The value of given expression.
Solution:
We have,
[tex]\tan (\cos ^{-1}(-\dfrac{1}{2}))[/tex]
[tex]=\tan (\pi-\cos^{-1}(\dfrac{1}{2}))[/tex] [tex][\because \cos^{-1}(-\theta)=\pi -\cos^{-1}\theta][/tex]
[tex]=\tan (\pi-\cos^{-1}(\cos \dfrac{\pi}{3}))[/tex] [tex][\because \cos \dfrac{\pi}{3}=\dfrac{1}{2}][/tex]
[tex]=\tan (\pi-\dfrac{\pi}{3})[/tex]
[tex]=-\tan (\dfrac{\pi}{3})[/tex] [tex][\because \tan(\pi-\theta)=-\tan \theta][/tex]
[tex]=-\sqrt{3}[/tex] [tex][\because \tan \dfrac{\pi}{3}=\sqrt{3}][/tex]
Therefore, the value of given expression is [tex]-\sqrt{3}[/tex].