Respuesta :

Answer:

[tex]\displaystyle log_\frac{1}{2}(64)=-6[/tex]

Step-by-step explanation:

Properties of Logarithms

We'll recall below the basic properties of logarithms:

[tex]log_b(1) = 0[/tex]

Logarithm of the base:

[tex]log_b(b) = 1[/tex]

Product rule:

[tex]log_b(xy) = log_b(x) + log_b(y)[/tex]

Division rule:

[tex]\displaystyle log_b(\frac{x}{y}) = log_b(x) - log_b(y)[/tex]

Power rule:

[tex]log_b(x^n) = n\cdot log_b(x)[/tex]

Change of base:

[tex]\displaystyle log_b(x) = \frac{ log_a(x)}{log_a(b)}[/tex]

Simplifying logarithms often requires the application of one or more of the above properties.

Simplify

[tex]\displaystyle log_\frac{1}{2}(64)[/tex]

Factoring [tex]64=2^6[/tex].

[tex]\displaystyle log_\frac{1}{2}(64)=\displaystyle log_\frac{1}{2}(2^6)[/tex]

Applying the power rule:

[tex]\displaystyle log_\frac{1}{2}(64)=6\cdot log_\frac{1}{2}(2)[/tex]

Since

[tex]\displaystyle 2=(1/2)^{-1}[/tex]

[tex]\displaystyle log_\frac{1}{2}(64)=6\cdot log_\frac{1}{2}((1/2)^{-1})[/tex]

Applying the power rule:

[tex]\displaystyle log_\frac{1}{2}(64)=-6\cdot log_\frac{1}{2}(\frac{1}{2})[/tex]

Applying the logarithm of the base:

[tex]\mathbf{\displaystyle log_\frac{1}{2}(64)=-6}[/tex]

ACCESS MORE