Answer:
1)27.25 feet
2)-0.2774,2.027
3)Domain = All real numbers
Range = y∈R : [tex]y \leq \frac{109}{4}[/tex]
Step-by-step explanation:
The height of the football, h, at time t seconds is modeled by the equation [tex]h(t) = -16t^2 + 28t + 15[/tex]
General quadratic equation : [tex]ax^2=bx+c=0[/tex]
1) Maximum height will be at [tex]\frac{-b}{2a}=\frac{-28}{2(-16)}=\frac{7}{8}[/tex]
To find maximum height Substitute [tex]t = \frac{7}{8}[/tex] in the given equation
[tex]h(t)=-16(\frac{7}{8})^2+28(\frac{7}{8})+15\\h(t)=27.25 feet[/tex]
2)
Substitute h(t)=6
So, [tex]-16t^2+28t+15=6[/tex]
[tex]-16t^2+28t+9=0\\t=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\\t=\frac{-28\pm \sqrt{28^2-4(-16)(9)}}{2(-16)}\\t=\frac{-28+ \sqrt{28^2-4(-16)(9)}}{2(-16)},\frac{-28- \sqrt{28^2-4(-16)(9)}}{2(-16)}\\t=-0.2774,2.027[/tex]
3)
Domain = All real numbers
Range = y∈R : [tex]y \leq \frac{109}{4}[/tex]