Respuesta :

Answer:

[tex]94 + 49i[/tex]

Step-by-step explanation:

Given

[tex]2 + \sqrt{-121[/tex] and [tex]3 + \sqrt{-64[/tex]

Required

Determine the products

We have:

[tex](2 + \sqrt{-121}) * (3 + \sqrt{-64})[/tex]

Factorize:

[tex]2(3 + \sqrt{-64}) + \sqrt{-121} (3 + \sqrt{-64})[/tex]

Open Brackets

[tex]6 + 2\sqrt{-64}+ 3\sqrt{-121} + \sqrt{-121} *\sqrt{-64}[/tex]

[tex]6 + 2\sqrt{-64}+ 3\sqrt{-121} + \sqrt{-121*-64}[/tex]

[tex]6 + 2\sqrt{-64}+ 3\sqrt{-121} + \sqrt{7744}[/tex]

Expand the expression in square roots

[tex]6 + 2\sqrt{-1 * 64}+ 3\sqrt{-1 * 121} + \sqrt{7744}[/tex]

Split roots

[tex]6 + 2\sqrt{-1} * \sqrt{64}+ 3\sqrt{-1} * \sqrt{121} + \sqrt{7744}[/tex]

Take positive square roots of 64, 121 and 7744

[tex]6 + 2\sqrt{-1} * 8+ 3\sqrt{-1} * 11 + 88[/tex]

[tex]6 + 16\sqrt{-1}+ 33\sqrt{-1}+ 88[/tex]

Collect Like Terms

[tex]88 + 6 + 16\sqrt{-1}+ 33\sqrt{-1}[/tex]

[tex]94 + 49\sqrt{-1}[/tex]

A complex number in standard form is:

[tex]a + bi[/tex]

Where

[tex]i = \sqrt{-1[/tex]

So:

[tex]94 + 49\sqrt{-1}[/tex]

=

[tex]94 + 49i[/tex]

Hence:

The product of [tex]2 + \sqrt{-121[/tex] and [tex]3 + \sqrt{-64[/tex] is  [tex]94 + 49i[/tex]

ACCESS MORE