f (x) = -3 + 7. Find the inverse of f(x) and its domain.
O A. f-1(x) 277 - 3, where x=-7
O B. f-1(x) = +7 +3, where x# 7
c. f-1(x) = 11 – 3, where x# 3
O D. f-1(x) = + 3, where x# 3
S

Respuesta :

Note: Your function is missing some information. It seems your function is

[tex]f\left(x\right)=\frac{-3}{x}+7[/tex].

So, I am solving the question based on the function [tex]f\left(x\right)=\frac{-3}{x}+7[/tex],  because it would still solve your query.

Answer:

Please see the explanation.

Step-by-step explanation:

Given the function

[tex]f\left(x\right)=\frac{-3}{x}+7[/tex]

A function g is the inverse of a function f for y = f(x), x=g(y)

[tex]y=\frac{-3}{x}+7[/tex]

Replace x with y

[tex]x=\frac{-3}{y}+7[/tex]

solve for y

[tex]y=-\frac{3}{x-7}[/tex]

so the inverse of [tex]f\left(x\right)=\frac{-3}{x}+7[/tex] will be:

[tex]f^{-1}\:\left(x\right)=-\frac{3}{x-7}[/tex]

Finding the domain of [tex]f^{-1}\:\left(x\right)=-\frac{3}{x-7}[/tex]

As we know that domain is the set of the possible input values where the function is defined.

so the function domain must be: [tex]x<7\quad \mathrm{or}\quad \:x>7[/tex]

Therefore,

[tex]\mathrm{Domain\:of\:}\:-\frac{3}{x-7}\::\quad \begin{bmatrix}\mathrm{Solution:}\:&\:x<7\quad \mathrm{or}\quad \:x>7\:\\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:7\right)\cup \left(7,\:\infty \:\right)\end{bmatrix}[/tex]

ACCESS MORE