Respuesta :
The object's temperature post 4 minutes in respect to degrees Fahrenheit would be:
- [tex]44.5[/tex]°C
Given that,
Function [tex]f(t)=Ce(-kt)+33[/tex]
where,
t = time in terms of minutes
C = constant
k = constant
The temperature of the object [tex]= 75[/tex]°
where, [tex]t = 0[/tex]
Using the function,
∵ [tex]f (0) = 75[/tex]
[tex]Ce^{(0)}[/tex] [tex]+ 33 = 75[/tex]
This will lead to
[tex]C = 42[/tex] (∵ C being constant)
Temperature post 2 minutes = [tex]55[/tex]°
or
[tex]55 =[/tex] [tex]42e^{(-2k)} + 33[/tex] (k being [tex]0.3233[/tex])
Thus,
Temperature after 4 minutes would be:
[tex]f(4) = 42e^{(-1.29325)} + 33[/tex]
[tex]= 44.5[/tex]°
Thus, [tex]44.5[/tex]°C is the correct answer.
Learn more about 'Temperature' here:
brainly.com/question/21031825