Given:
△BTS≅△GHD, BS = 25, TS = 14, BT = 31, GD = 4x - 11, m∠S = 56°, m∠B = 21°, and m∠H = (7y + 5)°.
To find:
The value of y.
Solution:
In △BTS,
[tex]m\angle B+m\angle T+m\angle S=180^\circ[/tex] (Angle sum property)
[tex]21^\circ+m\angle T+56^\circ=180^\circ[/tex]
[tex]m\angle T+77^\circ=180^\circ[/tex]
[tex]m\angle T=180^\circ-77^\circ[/tex]
[tex]m\angle T=103^\circ[/tex]
We have,
[tex]\Delta BTS\cong \Delta GHD[/tex]
So, [tex]\angle T\cong \angle H[/tex] (By CPCTC)
Then, [tex]m\angle T=m\angle H[/tex]
Now,
[tex]103=7y+5[/tex]
[tex]103-5=7y[/tex]
[tex]98=7y[/tex]
Divide both sides by 7.
[tex]14=y[/tex]
Therefore, the value of y is 14.