If \triangle BTS\cong\triangle GHD△BTS≅△GHD, BS = 25, TS = 14, BT = 31, GD = 4x - 11, m\angle∠S = 56°, m\angle∠B = 21°, and m\angle∠H = (7y + 5)°, find the value of y.

Respuesta :

Given:

△BTS≅△GHD, BS = 25, TS = 14, BT = 31, GD = 4x - 11, m∠S = 56°, m∠B = 21°, and m∠H = (7y + 5)°.

To find:

The value of y.

Solution:

In △BTS,

[tex]m\angle B+m\angle T+m\angle S=180^\circ[/tex]        (Angle sum property)

[tex]21^\circ+m\angle T+56^\circ=180^\circ[/tex]

[tex]m\angle T+77^\circ=180^\circ[/tex]

[tex]m\angle T=180^\circ-77^\circ[/tex]

[tex]m\angle T=103^\circ[/tex]

We have,

[tex]\Delta BTS\cong \Delta GHD[/tex]

So, [tex]\angle T\cong \angle H[/tex]             (By CPCTC)

Then, [tex]m\angle T=m\angle H[/tex]

Now,

[tex]103=7y+5[/tex]

[tex]103-5=7y[/tex]

[tex]98=7y[/tex]

Divide both sides by 7.

[tex]14=y[/tex]

Therefore, the value of y is 14.

ACCESS MORE