Respuesta :
Answer:
Step-by-step explanation:
Given that:
The mean [tex]\mu[/tex] = 22.40
The standard deviation = 0.048
Sample size n = 36
Then; the expected mean [tex]\mu_{\overline x }[/tex] = [tex]\mu[/tex] = 22.40
With Replacement;
The standard deviation [tex]\sigma _{ \overline x} = \dfrac{\sigma}{\sqrt{n}}[/tex]
[tex]\sigma _{ \overline x} = \dfrac{0.048}{\sqrt{36}}[/tex]
[tex]\sigma _{ \overline x} = \dfrac{0.048}{6}[/tex]
[tex]\sigma _{ \overline x} =0.008[/tex]
Without replacement;
The standard deviation [tex]\sigma _{ \overline x} = \sqrt{\dfrac{{N-n}}{N-1}} \times \dfrac{\sigma}{\sqrt{n}}[/tex]
[tex]\sigma _{ \overline x} = \sqrt{\dfrac{{300-36}}{300-1}} \times \dfrac{0.048}{\sqrt{36}}[/tex]
[tex]\sigma _{ \overline x} = \sqrt{\dfrac{{264}}{299}} \times \dfrac{0.048}{6}[/tex]
[tex]\sigma_{\overline x} = 0.0075[/tex]
Also;
For population consisting of 72 ball bearings.
the expected mean [tex]\mu_{\overline x }[/tex] = [tex]\mu[/tex] = 22.40
With Replacement;
The standard deviation [tex]\sigma _{ \overline x} = \dfrac{\sigma}{\sqrt{n}}[/tex]
[tex]\sigma _{ \overline x} = \dfrac{0.048}{\sqrt{72}}[/tex]
[tex]\sigma _{ \overline x} = \dfrac{0.048}{8.485}[/tex]
[tex]\sigma _{ \overline x} =0.0057[/tex]
Without replacement;
The standard deviation [tex]\sigma _{ \overline x} = \sqrt{\dfrac{{N-n}}{N-1}} \times \dfrac{\sigma}{\sqrt{n}}[/tex]
[tex]\sigma _{ \overline x} = \sqrt{\dfrac{{300-72}}{300-1}} \times \dfrac{0.048}{\sqrt{72}}[/tex]
[tex]\sigma _{ \overline x} = \sqrt{\dfrac{{228}}{299}} \times \dfrac{0.048}{8.485}[/tex]
[tex]\sigma_{\overline x} =0.0049[/tex]
A) The expected mean and standard deviation of the sampling distribution of means if sampling is done with replacement are;
μₓ = 22.4 oz and σₓ = 0.008 oz
B) The expected mean and standard deviation of the sampling distribution of means if sampling is done without replacement are;
μₓ = 22.4 oz and σₓ = 0.008 oz
A) Sample size; n = 36
Standard deviation; σ = 0.048
Mean; μ = 22.4
Sampling with replacement;
Expected mean is; μₓ = μ
Thus; μₓ = 22.4 oz
Expected standard deviation is gotten from the formula;
σₓ = σ/√n
σₓ = 0.0048/√36
σₓ = 0.008 oz
B) Sampling without replacement;
Expected mean is; μₓ = μ
Thus; μₓ = 22.4 oz
Expected standard deviation is gotten from the formula;
σₓ = (σ/√n) × √((N - n)/(N - 1))
The sample size of 36 is way less than 5% of the population size 1500. Thus, we would drop the factor √((N - n)/(N - 1)) according to general rule of fpc and our expected standard deviation is;
σₓ = (σ/√n)
σₓ = 0.0048/√36
σₓ = 0.008 oz
The population now consists of a sample size of 72 ball bearings. Thus;
C) With Replacement;
Expected mean remains; μₓ = 22.4 oz
Expected standard deviation is;
σₓ = (σ/√n)
σₓ = 0.048/√72
σₓ = 0.0057 oz
D) Without Replacement;
Expected mean remains; μₓ = 22.4 oz
Expected standard deviation is;
σₓ = (σ/√n) × √((N - n)/(N - 1))
We will maintain that formula because 72 as sample size is very close to 5% of the population size. Thus;
σₓ = (0.048/√72) × √((1500 - 72)/(1500 - 1))
σₓ = 0.0055 oz
Read more about expected mean and expected standard deviation at; https://brainly.com/question/16095842