Answer:
The answer is "24 Hours".
Step-by-step explanation:
The calculated time for [tex]2^{nd}[/tex]unit:
[tex]\to T_2 =T_1 \times (2)^{\frac{log(r)}{log(2)}}[/tex]
[tex]=30 ................(a)[/tex]
Calculating the time for [tex]4^{th}[/tex]unit:
[tex]T_4=T_1\times (4)^{\frac{log(r)}{log(2)}}[/tex]
[tex]=21 ..............(b)[/tex]
On dividing the value from equation (a) to (b):
r= 0.7
Put the value of r into equation (a)
[tex]T_1=42.8571[/tex]
Calculating the value of time for [tex]3^{rd}[/tex] unit:
[tex]= 42.8571 \times (3)^{\frac{log(0.7)}{log(2)}} \\\\=24.35 \ Hours\\\\=24[/tex]