Respuesta :

Diagram:-

[tex]\setlength{\unitlength}{1 cm}\begin{picture}(20,15)\thicklines\qbezier(1,1)(1,1)(6,1)\qbezier(1,1)(1,1)(1.6,4)\qbezier(1.6,4)(1.6,4)(6.6,4)\qbezier(6,1)(6,1)(6.6,4)\qbezier(6.6,4)(6.6,4)(1,1)\qbezier(1.6,4)(1.6,4)(6,1)\put(0.7,0.5){\sf A}\put(6,0.5){\sf B}\put(1.4,4.3){\sf D}\put(6.6,4.3){\sf C}\end{picture}[/tex]

Required Answer:-

The diagonals of the Rhombus= d1 & d2=6cm and 8cm

Let the Side=a

As we know that in a Rhombus

[tex]{\boxed{\sf side=\sqrt {\left ({\dfrac{d1}{2}}\right)^2+\left ({\dfrac {d2}{2}}\right)^2}}}[/tex]

  • Substitute the values

[tex]{:}\longmapsto [/tex][tex]\sf a=\sqrt {\left ({\dfrac {6}{2}}\right)^2+\left ({\dfrac {8}{2}}\right)^2 }[/tex]

[tex]{:}\longmapsto [/tex][tex]\sf a=\sqrt {(3)^2+(4)^2}[/tex]

[tex]{:}\longmapsto [/tex][tex]\sf a=\sqrt {9+16}[/tex]

[tex]{:}\longmapsto [/tex][tex]\sf a=\sqrt{25}[/tex]

[tex]{:}\longmapsto [/tex][tex]\sf a=5cm [/tex]

_____________

Again

we know that in a Rhombus

[tex]\boxed{\sf Perimeter=4a}[/tex]

  • Substitute the values

[tex]{:}\longmapsto [/tex][tex]\sf Perimeter=4×5 [/tex]

[tex]{:}\longmapsto [/tex][tex]\sf Perimeter=20cm [/tex]

[tex]\therefore[/tex]Perimeter of the rectangle is 20cm.

ACCESS MORE