Answer:
Step-by-step explanation:
Given that:
Sample Mean [tex]\overline x[/tex] = 82.25
The Standard deviation of the population [tex]\sigma[/tex] = 30.00
The Sample size = 100,000
The margin of error M.O.E = 0.186
At a 95% confidence interval level;
[tex]=\overline x - M.O.E < \mu < \overline x + M.O.E[/tex]
= 82.25 - 0.186 < [tex]\mu[/tex] < 82.25 + 0.186
= 82.064 < [tex]\mu[/tex] < 82.436
= (82.064 , 82.436)
The 95% confidence interval of the population mean = (82.064 , 82.436)
Before we can determine the sampling error, we need to find the standard error of the mean.
The standard error of the mean is:
[tex]\mu_ {\bar x} = \mu = 82.25[/tex]
[tex]\sigma_{\bar x} = \dfrac{\sigma}{\sqrt{n}}[/tex]
[tex]\sigma_{\bar x} = \dfrac{30}{\sqrt{100000}}[/tex]
[tex]\sigma_{\bar x} = \dfrac{30}{316.23}[/tex]
[tex]\sigma_{\bar x} = 0.096[/tex]
At 95% confidence interval, the level of significance = 1 - 0.95 = 0.05
[tex]Z_{0.05/2} = Z_{0.025}[/tex] = 1.96
Now, the sampling error can be determined by using the formula:
[tex]=Z_{\alpha/2} \times \sigma _{\overline x}[/tex]
[tex]=Z_{0.025} \times \sigma _{\overline x}[/tex]
= 1.96 × 0.096
= 0.18816