Respuesta :
Answer:
52degrees
Step-by-step explanation:
Let the measure of the largest angle be x
middle angle be y
smallest angle be z
Since the sum of angle in a triangle is 180 degrees, hence;
x + y + z = 180 .... 1
If the measure of the largest angle is 32 less than 3 times the smallest angle, then;
x = 3z - 32
3z = x+ 32
z = x+32/3 ..... 2
If he measure of the middle angle is 8 more than half the measure of the largest angle, then;
y = x/2 + 8 .... 3
Substitute 2 and 3 into 1;
x + x/2 + 8 + (x+32)/3 = 180
multiply through by 6
6x + 3x + 48 + 2(x+32) = 1080
9x + 48 + 2x + 64 = 1080
11x + 112 = 1080
11x = 1080-112
11x = 968
x = 968/11
x = 88 degrees
Get the middle angle y;
Since y = x/2 + 8
y = 88/2 + 8
y = 44 + 8
y = 52 degrees
Hence the measure of the middle angle is 52degrees
The angles in a triangle add up to 180 degrees.
The middle angle is 52 degrees
Let the largest, middle angle and the smallest angle be x, y and z
From the question, we have:
[tex]\mathbf{x = 3z -32}[/tex]
[tex]\mathbf{y = 8 + \frac 12x}[/tex]
Make z in [tex]\mathbf{x = 3z -32}[/tex]
[tex]\mathbf{z =\frac{x + 32}{3}}[/tex]
The angles in a triangle add up to 180 degrees.
So, we have:
[tex]\mathbf{x + y + z = 180}[/tex]
Substitute the expressions for y and z in [tex]\mathbf{x + y + z = 180}[/tex]
[tex]\mathbf{x + 8 + \frac 12x + \frac{x+32}{3} = 180}[/tex]
Multiply through by 6
[tex]\mathbf{6x + 3x + 48 + 2(x+32) = 1080}[/tex]
[tex]\mathbf{9x + 48 + 2(x+32) = 1080}[/tex]
Open brackets
[tex]\mathbf{9x + 48 + 2x + 64 = 1080}[/tex]
Evaluate like terms
[tex]\mathbf{11x + 112 = 1080}[/tex]
Subtract 112 from both sides
[tex]\mathbf{11x = 968}[/tex]
Divide both sides by 11
[tex]\mathbf{x = 88}[/tex]
Substitute 88 for x in [tex]\mathbf{y = 8 + \frac 12x}[/tex]
[tex]\mathbf{y = 8 + \frac{88}2}[/tex]
[tex]\mathbf{y = 8 + 44}[/tex]
[tex]\mathbf{y = 52^o}[/tex]
Hence, the middle angle is 52 degrees
Read more about triangles at:
https://brainly.com/question/22790855
