Answer:
The new pressure is 1.06 atmospheres
Explanation:
We can calculate the new pressure from using the Combined gas law equation.
The combined gas law equation is
[tex]\frac{P_{1}V_{1} }{T_{1} } = \frac{P_{2}V_{2} }{T_{2} }[/tex]
Where [tex]P_{1}[/tex] is the initial pressure
[tex]V_{1}[/tex] is the initial volume
[tex]T_{1}[/tex] is the initial temperature
[tex]P_{2}[/tex] is the final pressure
[tex]V_{2}[/tex] is the final volume
and [tex]T_{2}[/tex] is the final temperature
From the question,
[tex]V_{1}[/tex] = 56 L
[tex]T_{1}[/tex] = 234 °C = (234 + 273.15)K = 507.15K
[tex]P_{1}[/tex] = 1.1 atm
[tex]V_{2}[/tex] = 54 L
[tex]T_{2}[/tex] = 200 °C = (200 + 273.15)K = 473.15K
Now, to determine [tex]P_{2}[/tex] (the new pressure), we will put the given values into the equation
[tex]\frac{P_{1}V_{1} }{T_{1} } = \frac{P_{2}V_{2} }{T_{2} }[/tex]
[tex]\frac{1.1 \times 56}{507.15}= \frac{P_{2} \times 54 }{473.15}[/tex]
∴ [tex]P_{2} = \frac{1.1 \times 56 \times 473.15 }{54 \times 507.15}[/tex]
Then,
[tex]P_{2} = \frac{29146.04 }{27386.1}[/tex]
[tex]P_{2} = 1.06[/tex] atm
Hence, the new pressure is 1.06 atmospheres.